Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Genet ; 13: 819749, 2022.
Article in English | MEDLINE | ID: covidwho-1902953

ABSTRACT

The host epigenetic landscape rapidly changes during SARS-CoV-2 infection, and evidence suggest that severe COVID-19 is associated with durable scars to the epigenome. Specifically, aberrant DNA methylation changes in immune cells and alterations to epigenetic clocks in blood relate to severe COVID-19. However, a longitudinal assessment of DNA methylation states and epigenetic clocks in blood from healthy individuals prior to and following test-confirmed non-hospitalized COVID-19 has not been performed. Moreover, the impact of mRNA COVID-19 vaccines upon the host epigenome remains understudied. Here, we first examined DNA methylation states in the blood of 21 participants prior to and following test-confirmed COVID-19 diagnosis at a median time frame of 8.35 weeks; 756 CpGs were identified as differentially methylated following COVID-19 diagnosis in blood at an FDR adjusted p-value < 0.05. These CpGs were enriched in the gene body, and the northern and southern shelf regions of genes involved in metabolic pathways. Integrative analysis revealed overlap among genes identified in transcriptional SARS-CoV-2 infection datasets. Principal component-based epigenetic clock estimates of PhenoAge and GrimAge significantly increased in people over 50 following infection by an average of 2.1 and 0.84 years. In contrast, PCPhenoAge significantly decreased in people fewer than 50 following infection by an average of 2.06 years. This observed divergence in epigenetic clocks following COVID-19 was related to age and immune cell-type compositional changes in CD4+ T cells, B cells, granulocytes, plasmablasts, exhausted T cells, and naïve T cells. Complementary longitudinal epigenetic clock analyses of 36 participants prior to and following Pfizer and Moderna mRNA-based COVID-19 vaccination revealed that vaccination significantly reduced principal component-based Horvath epigenetic clock estimates in people over 50 by an average of 3.91 years for those who received Moderna. This reduction in epigenetic clock estimates was significantly related to chronological age and immune cell-type compositional changes in B cells and plasmablasts pre- and post-vaccination. These findings suggest the potential utility of epigenetic clocks as a biomarker of COVID-19 vaccine responses. Future research will need to unravel the significance and durability of short-term changes in epigenetic age related to COVID-19 exposure and mRNA vaccination.

2.
PLoS One ; 16(6): e0252818, 2021.
Article in English | MEDLINE | ID: covidwho-1264219

ABSTRACT

Most deaths from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection occur in older subjects. We assessed the utility of serum inflammatory markers interleukin-6 (IL-6), C reactive protein (CRP), and ferritin (Roche, Indianapolis, IN), and SARS-CoV-2 immunoglobulin G (IgG), immunoglobulin M (IgM), and neutralizing antibodies (Diazyme, Poway, CA). In controls, non-hospitalized subjects, and hospitalized subjects assessed for SARS-CoV-2 RNA (n = 278), median IgG levels in arbitrary units (AU)/mL were 0.05 in negative subjects, 14.83 in positive outpatients, and 30.61 in positive hospitalized patients (P<0.0001). Neutralizing antibody levels correlated significantly with IgG (r = 0.875; P<0.0001). Having combined values of IL-6 ≥10 pg/mL and CRP ≥10 mg/L occurred in 97.7% of inpatients versus 1.8% of outpatients (odds ratio 3,861, C statistic 0.976, P = 1.00 x 10-12). Antibody or ferritin levels did not add significantly to predicting hospitalization. Antibody testing in family members and contacts of SARS-CoV-2 RNA positive cases (n = 759) was invaluable for case finding. Persistent IgM levels were associated with chronic COVID-19 symptoms. In 81,624 screened subjects, IgG levels were positive (≥1.0 AU/mL) in 5.21%, while IgM levels were positive in 2.96% of subjects. In positive subjects median IgG levels in AU/mL were 3.14 if <30 years of age, 4.38 if 30-44 years of age, 7.89 if 45-54 years of age, 9.52 if 55-64 years of age, and 10.64 if ≥65 years of age (P = 2.96 x 10-38). Our data indicate that: 1) combined IL-6 ≥10 pg/mL and CRP ≥10 mg/L identify SARS-CoV-2 positive subjects requiring hospitalization; 2) IgG levels were significantly correlated with neutralizing antibody levels with a wide range of responses; 3) IgG levels have significant utility for case finding in exposed subjects; 4) persistently elevated IgM levels are associated with chronic symptoms; and 5) IgG levels are significantly higher in positive older subjects than their younger counterparts.


Subject(s)
COVID-19/blood , Inflammation/blood , Adult , Age Factors , Aged , Aging , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , C-Reactive Protein/analysis , C-Reactive Protein/immunology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Female , Ferritins/blood , Ferritins/immunology , Hospitalization , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Inflammation/diagnosis , Inflammation/epidemiology , Inflammation/immunology , Interleukin-6/blood , Interleukin-6/immunology , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL